Tuesday, March 02, 2010

Unsur Golongan IVB

Setelah kemaren udah posting tentang unsur golongan IIIB, maka hari ini saatnya posting tentang unsur golongan IVB. Langsung saja yuuuk~



Yak dari gambar itu bisa diliat kalo di golongan IVB (yang dibuletin) ada 4 unsur sama kayak golongan IIIB, yaitu Ti (Titanium), Zr (Zirkonium), Hf (Hafnium) dan Rf (Ruthefordium). Terdengar aneh dan asing kah nama unsurnya??? Bagi yang gak biasa emang aneh sih hahaha ya sutralah.... Lanjut ke pembahasan masing-masing unsur~


TITANIUM

Simbol : Ti
Radius Atom : 1.45 Å
Volume Atom : 10.6 cm3/mol
Massa Atom : 47.88
Titik Didih : 3560 K
Radius Kovalensi : 1.32 Å
Struktur Kristal : Heksagonal
Massa Jenis : 4.54 g/cm3
Konduktivitas Listrik : 2.6 x 106 ohm-1cm-1
Elektronegativitas : 1.54
Konfigurasi Elektron : [Ar]3d2 4s2
Formasi Entalpi : 18.6 kJ/mol
Konduktivitas Panas : 21.9 Wm-1K-1
Potensial Ionisasi : 6.82 V
Titik Lebur : 1935 K
Bilangan Oksidasi : 4,3
Kapasitas Panas : 0.523 Jg-1K-1
Entalpi Penguapan : 455.2 kJ/mol

Titanium (Ti)
Nomor Atom: 22
Simbol Atom: Ti
Berat Atom: 47.90
Konfigurasi Elektron: [Ar]4s23d2

Sejarah
(Latin: titans, anak pertama bumi dalam mitologi romawi) Ditemukan oleh Gregor di tahun 1791 dan dinamakan oleh Klaproth di tahun 1795. Titanium yang tidak murni dipersiapkan oleh Nilson dan Pettersson di tahun 1887, tetapi unsur yang murni tidak dibuat sampai pada tahun 1910 oleh Hunter dengan cara memanaskan TiCl4 dengan natrium dalam bom baja.

Sumber
Titanium ditemukan di meteor dan di dalam matahari. Bebatuan yang diambil oleh misi Apollo 17 menunjukkan keberadaan TiO2 sebanyak 12,1%. Garis-garis titanium oksida sangat jelas terlihat di spektrum bintang-bintang tipe M. Unsur ini merupakan unsur kesembilan terbanyak pada kerak bumi. Titanium selalu ada dalam igneous rocks (bebatuan) dan dalam sedimen yang diambil dari bebatuan tersebut. Ia juga terdapat dalam mineral rutile, ilmenite dan sphene dan terdapat dalam titanate dan bijih besi. Titanium juga terdapat di debu batubara, dalam tetumbuhan dan dalam tubuh manusia. Logam ini hanya dikutak-kutik di laboraturium sampai pada tahun 1946, Kroll menunjukkan cara memproduksi titanium secara komersil dengan mereduksi titanium tetraklorida dengan magnesium. Metoda ini yang dipakai secara umum saat ini. Selanjutnya logam titanium dapat dimurnikan dengan cara medekomposisikan iodanya.

Sifat-sifat
Titanium murni merupakan logam putih yang sangat bercahaya. Ia memiliki berat jenis rendah, kekuatan yang bagus, mudah dibentuk dan memiliki resistansi korosi yang baik. Jika logam ini tidak mengandung oksigen, ia ductile. Titanium merupakan satu-satunya logam yang terbakar dalam nitrogen dan udara. Titanium juga memiliki resistansi terhadap asam sulfur dan asam hidroklorida yang larut, kebanyakan asam organik lainnya, gas klor dan solusi klorida. Titanium murni diberitakan dapat menjadi radioaktif setelah dibombardir dengan deuterons. Radiasi yang dihasilkan adalah positrons dan sinar gamama. Logam ini dimorphic. Bentuk alfa heksagonal berubah menjadi bentuk beta kubus secara perlahan-lahan pada suhu 880 derajat Celcius. Logam ini terkombinasi dengan oksigen pada suhu panas merah dan dengan klor pada suhu 550 derajat Celcius. Logam titanium tidak bereaksi dengan fisiologi tubuh manusia (physiologically inert). Titanium oksida murni memiliki indeks refraksi yang tinggi dengan dispersi optik yang lebih tinggi daripada berlian.

Isotop
Titanium alami memiliki lima isotop dengan masa atom dari 46 sampai 50. Semuanya stabil. Ada delapan isotop titanium yang labil.

Kegunaan
Titanium sangat penting sebagai agen campuran logam dengan aluminium, molibdenum, manggan, besi dan beberapa logam lainnya. Campuran logam titanium digunakan terutama untuk bahan pesawat terbang dan misil, dimana logam ringan, kuat dan tahan suhu tinggi diperlukan. Titanium sekuat baja, tetapi 45% lebih ringan. Ia 60% lebih berat daripada aluminium, tetapi dua kali lebih kuat. Titanium memiliki kegunaan potensial di pabrik desalinasi untuk mengkonversi air laut menjadi air tawar. Logam ini memiliki resistansi yang baik terhadap air laut dan digunakan untuk baling-baling kapal dan bagian kapal lainnya yang terekspos pada air asin. Anoda titanium yang dilapisi platinum telah digunakan untuk memberikan perlindungan dari korosi air garam. Titanium diproduksi secara buatan untuk permata. Safir dan rubi menunjukkan asterism sebagai hasil keberadaan TiO2. Titanium dioksida sangat banyak digunakan untuk cat rumah dan cat lukisan karena permanen dan memilki sifat penutup yang baik. Pigmen titanium oksida merupakan aplikasi yang terbanyak untuk unsur ini. Cat titanium merupakan reflektor sinar infra yang sangat bagus dan banyak digunakan pada tempat-tempat pengamatan matahari (solar observatories) dimana panas dapat mengganggu pengamatan. Titanium tetraklorida digunakan untuk mengiridasi gelas. Senyawa ini mengeluarkan asap tebal di udara.

ZIRCONIUM

Simbol : Zr
Radius Atom : 1.6 Å
Volume Atom : 14.1 cm3/mol
Massa Atom : 91.224
Titik Didih : 4682 K
Radius Kovalensi : 1.45 Å
Struktur Kristal : Heksagonal
Massa Jenis : 6.51 g/cm3
Konduktivitas Listrik : 2.3 x 106 ohm-1cm-1
Elektronegativitas : 1.33
Konfigurasi Elektron : [Kr]4d2 5s2
Formasi Entalpi : 21 kJ/mol
Konduktivitas Panas : 22.7 Wm-1K-1
Potensial Ionisasi : 6.84 V
Titik Lebur : 2128 K
Bilangan Oksidasi : 4
Kapasitas Panas : 0.278 Jg-1K-1
Entalpi Penguapan : 590.5 kJ/mol

Sejarah
(Persia: zargun, seperti emas). Nama zirkon kemungkinan berasal dari bahasa Persia zargun yang memberikan deskripsi warna batu permata yang sekarang dikenal sebagai zircon, jargon, hyacinth, atau ligure. Mineral ini, dalam berbagai variasinya disebut juga dalam Injil. Mineral tidak diketahui mengandung elemen baru sampai Klaproth, pada tahun 1789, menganalisa jargon dari pulau Ceylon dan menemukan bahan baru yang dia namakan Zirkonertz (zirconia), tetapi Werner namakan zircon (silex circonius). Logam ini dalam bentuknya yang tidak murni pertama kali diisolasi oleh Berzelius di tahun 1824 dengan memanaskan campuran potasium dan potasium zirkonium fluorida dalam proses dekomposisi yang mereka kembangkan.

Sumber
Zirkonium ditemukan dalam jumlah banyak di bintang-bintang tipe S, dan juga telah diidentifikasikan dalam matahari dan meteor. Analisis bebatuan bulan yang diambil dari berbagai misi Apollo menunjukkan kandungan zirkonium yang tinggi, dibandingkan dengan bebatuan bumi.

Isotop
Zirkonium alami mengandung lima isotop. Lima belas isotop lainnya juga diketahui keberadaannya. Bijih utama zirkon dan ZrSiO4 adalah ZrO2 dalam bentuk kristal yang mengandung hafnium sebesar sekitar 1%. Zirkonium juga muncul dalam 30 spesies mineral lainnya. Zirkonium diproduksi secara komersil dengan mereduksi klorida dengan magnesium (proses Kroll) dan dengan cara-cara lain. Unsur ini merupakan logam putih keabu-abuan yang terang. Ketika dibelah, logam ini dapat terbakar di udara secara spontan, terutama pada suhu yang tinggi. Logam padat unsur ini lebih susah untuk terbakar. Tingkat keracunan senyawa zirkonium sangat rendah. Hafnium ditemukan pada bijih zirkonium dan memisahkannya sangat sulit.

Zirkonium komersil mengandung 1- 3% hafnium. Zirkonium memiliki absoprsi netron cross-section yang rendah, oleh karena itu digunakan untuk aplikasi energi nuklir. Pusat pembangkit listrik nuklir sekarang ini mengkonsumsi 90% logam zirkonium. Reaktor-reaktor nuklir komersil yang sekarang ini dibuat, dapat menggunakan setengah juta kaki pipa campuran logam zirkonium.

Sifat-sifat
Zirkonium yang digunakan di reaktor nuklir tidak mengandung hafnium. Zircaloy® merupakan campuran logam yang penting yang dikembangkan khusus untuk aplikasi nuklir. Zirkonium memiliki resitansi tinggi terhadap korosi terhadap berbagai jenis asam dan alkali, air laut dan agen-agen lain. Jika dicamput dengan seng, zirkonium menjadi magnet pada suhu dibawah 35K.

Kegunaan
Unsur ini banyak digunakan oleh industri kimia dimana agen-agen korosif digunakan. Zirkonium digunakan sebagai getter dalam tabung vakum, sebagai agen pencampur logam dalam baja, peralatan bedah, primer peledak, filamen bola lampu pijar dan rayon spinnerets. Dengan niobium, zirkonium menjadi superkonduktif pada suhu rendah dan digunakan untuk membuat magnet superkonduktif. Zirkonium oksida (zirkon) memiliki indeks refraksi yang tinggi dan digunakan sebagai bahan batu permata. Oksida yang tidak murni, zirkonia digunakan untuk laboratory crucibles yang dapat menahan panas, dalam tungku pemanas dan oleh industri gelas dan keramik sebagai bahan refratory.

HAFNIUM

Simbol : Hf
Radius Atom : 1.67 Å
Volume Atom : 13.6 cm3/mol
Massa Atom : 178.49
Titik Didih : 4857 K
Radius Kovalensi : 1.44 Å
Struktur Kristal : Heksagonal
Massa Jenis : 13.31 g/cm3
Konduktivitas Listrik : 3.4 x 106 ohm-1cm-1
Elektronegativitas : 1.3
Konfigurasi Elektron : [Xe]4f14 5d2 6s2
Formasi Entalpi : 21.76 kJ/mol
Konduktivitas Panas : 23 Wm-1K-1
Potensial Ionisasi : 6.65 V
Titik Lebur : 2504 K
Bilangan Oksidasi : 4
Kapasitas Panas : 0.14 Jg-1K-1
Entalpi Penguapan : 661.07 kJ/mol
Sejarah
(Hafinia, nama Latin untuk Kopenhagen) Beberapa tahun sebelum ditemukannya unsur ini di tahun 1932 (oleh D. Costerdan G. von Hevesey), Hafnium diperkirakan muncul dalam berbagai jenis mineral. Sesuai dengan teori Bohr, unsur baru ini diasosiasikan dengan zirkonium. Akhirnya unsur ini berhasil diidentifisikan sebagai zirkon dari Norway, dengan analisis spektroskopi sinar X. Ia dinamakan sesuai sengan kota dimana unsur ini ditemukan. Kebanyakan mineral zirkonium mengandung 1- 5% hafnium.

Hafnium pada awalnya dipisahkan dari zirkonium dengan cara rekristalisasi berulang-ulang amonium atau kalium fluorida oleh von Hevesey dan Jantzen. Logam hafnium pertama kali dipersiapkan oleh van Arkel dan deBoer dengan cara menyalurkan uap tetraiodida di atas filamen tungsten yang dipanaskan. Hampir semua logam hafnium sekarang ini diproduksi dengan cara mereduksi tetraklorida dengan magnesium atau dengan sodium (proses Kroll).

Sifat-sifat
Hafnium merupakan logam ductile dengan warna terang perak. Sifat-sifatnya sangat ditentukan oleh keberadaan unsur zirkonium. Dari semua unsur, zirkonium dan hafnium merupakan dua elemen yang sangat sulit dipisahkan. Walau sifat kimia mereka sangat serupa satu sama lain, berat jenis zirkonium sekitar setengah hafnium. Hafnium yang hampir murni sudah pernah diproduksi dengan zirkonium sebagai unsur yang masih terkandung di dalamnya (impurity).

Hafnium telah berhasil dicampur dengan besi, titanium, niobium, tantalum dan beberapa logam lainnya. Hafnium karbida merupakan refractory binary composition, dan nitridanya merupakan the most refractory of all known metal nitrides (m.p. 3310 C). Pada suhu 700 derajat Celcius hafnium mengabsorsi hidrogen untuk membentuk komposisi HfH1.86.

Hafnium memiliki resitansi terhadapa alkali, tetapi pada suhu tinggi bereaksi dengan oksigen, nitrogen, karbon, boron, sulfur, dan silikon. Halogen bereaksi secara langsung untuk membentuk tetrahalida.

Kegunaan
Hafnium memiliki absorpsi cross-section yang baik untuk netron (hampir 600 kali lipat zirkonium) dan juga memiliki sifat mekanik yang sangat bagus dan sangat resistan terhadap korosi, hafnium digunakan sebagai tangkai kontrol reaktor. Tangkai ini digunakan di kapal selam nuklir.

Hafnium digunakan dalam bola lampu gas dan pijar serta merupakan getter efisien untuk mengambil oksigen dan nitrogen.

Penanganan
Hafnium yang terbelah-belah kecil dapat terbakar secara spontan di udara. Kehati-hatian perlu dijaga jika membentuk logam hafnium. Jangan terekspos pada hafnium lebih dari 0,5 mg/jam (berdasarkan 8 jam berat rata-rata, selama 40 jam per minggu).

RUTHERFORDIUM

Simbol : Rf
Radius Atom : Å
Volume Atom : cm3/mol
Massa Atom : -261
Titik Didih : K
Radius Kovalensi : Å
Struktur Kristal : n/a
Massa Jenis : g/cm3
Konduktivitas Listrik : x 106 ohm-1cm-1
Elektronegativitas : n/a
Konfigurasi Elektron : [Rn]5f14 6d2 7s2
Formasi Entalpi : kJ/mol
Konduktivitas Panas : Wm-1K-1
Potensial Ionisasi : V
Titik Lebur : K
Bilangan Oksidasi : n/a
Kapasitas Panas : Jg-1K-1
Entalpi Penguapan : kJ/mol

 Sejarah
Pada tahun 1964, para pekerja di Joint Nuclear Research Institute di Dubna, Uni Soviet membombardir plutonium dengan ion-ion neon yang memiliki energi 113 – 115 MeV. Mereka mendeteksi satu isotop hasil fisi spontan dengan menggunakan mikroskop pada gelas khusus tempat jejak-jejak fisi ini terekam. Mereka memperkirakan isotop ini dengan paruh waktu 0.3 ± 0.1 detik merupakan 260-104, diproduksi oleh reaksi berikut:

242Pu + 22Ne -> 104 + 4n.

Unsur 104, unsur pertama transactinide, ditebak memiliki sifat-sifat kimia mirip dengan hafnium. Ia akan membentuk senyawa dengan klor misalnya. Para ilmuwan Soviet yang melakukan eksperimen di atas berusaha mengenali unsur ini secara kimia dan telah berusaha menunjukkan bahwa isotop ini lebih bergejolak ketimbang actinide tetrachloride. Eksperimen ini tidak dapat memisahkan unsur baru tersebut secara kimia, tetapi memberikan bukti yang cukup untuk evaluasi yang lebih jauh. Data baru yang dikeluarkan ilmuwan Soviet mengurangi paruh waktu dari 0.3 ke 0.15 detik. Ilmuwan-ilmuwan Dubna menyarankan pemberian nama kurchatovium dan simbol Ku untuk unsur 104 untuk menghormati Igor Vasilevich Kurchatov (1903-1960), mantan ketua Riset Nuklir Uni Soviet.

Isotop
Pada tahun 1969, Ghiorso, Nurmia, Harris, K.A.Y Eskola, dan P.L. Eskola dari Universita California Berkeley memberitakan bahwa mereka telah berhasil mengidentifikasikan dua, bahkan mungkin tiga isotop unsur 104. Grup ini memberikan indikasi bahwa setelah mencoba berulang kali, mereka berhasil memproduksi isotop 260-104 seperti yang dilaporkan oleh grup Dubna pada tahun 1964.

Temuan-temuan di Berkeley dihasilkan dengan cara membombardir 249Cf dengan nukleus 12C dengan energi 71 MeV dan oleh nukleus 13C dengan nukleus 69 MeV. Kombinasi 12C dengan 249Cf diikuti oleh emisi empat netron yang memproduksi unsur 257-104. Isotop ini memiliki paruh waktu 4 – 5 detik, yang kemudian mengurai dengan memancarkan partikel alfa ke 253No dengan paruh waktu 105 detik.

Reaksi yang sama, kecuali dengan emisi tiga netron, diperkirakan memproduksi 258-104 dengan paruh waktu sekitar 1/100 detik.

Unsur 259-104 dibentuk dengan menyatunya nukelus 13C dengan 249Cf, diikuti oleh emisi tiga netron. Isotop ini memiliki paruh waktu 3 – 4 detik, dan mengurai dengan memancarkan partikel alfa ke 255No, yang memiliki paruh waktu 185 detik.

Ribuan atom 257-104 dan 259-104 telah terdeteksi. Grup Berkeley percaya bahwa 258-104 yang mereka identifikasikan adalah benar, tetapi tidak seyakin atas eksperimen mereka terhadap 257-104 dan 259-104.

Klaim untuk penemuan dan pemberian nama unsur 104 masih dalam tanda tanya. Grup Berkeley mengajukan nama rutherfordium (Rf) untuk menghormati Ernest Rutherford, fisikawan Selandia Baru. Sementara ini, organisasi International Union of Pure and Applied Physics mengajukan nama sementara yang netral unnilquadium.


source : chem-is-try.org

Yess.. selesai juga hahahaha.. *girang sendiri*

0 comments:

Post a Comment

 
Copyright My Neverending Story~~ 2009. Powered by Blogger.Designed by Ezwpthemes .
Converted To Blogger Template by Anshul .